Skip to main content

Designing a Scalable Distributed Cache System for 1 Billion Queries Per Minute

 

Designing a distributed cache system to handle 1 billion queries per minute for both read and write operations is a complex task. Here’s a high-level overview of how you might approach this:

1. Requirements Gathering

  • Functional Requirements:
    • Read Data: Quickly retrieve data from the cache.
    • Write Data: Store data in the cache.
    • Eviction Policy: Automatically evict least recently/frequently used items.
    • Replication: Replicate data across multiple nodes for fault tolerance.
    • Consistency: Ensure data consistency across nodes.
    • Node Management: Add and remove cache nodes dynamically.
  • Non-Functional Requirements:
    • Performance: Low latency for read and write operations.
    • Scalability: System should scale horizontally by adding more nodes.
    • Reliability: Ensure high availability and fault tolerance.
    • Durability: Persist data if required.
    • Security: Secure access to the cache system.

2. Capacity Estimation

  • Traffic Estimate:
    • Read Traffic: Estimate the number of read requests per second.
    • Write Traffic: Estimate the number of write requests per second.
  • Storage Estimate:
    • Data Size: Estimate the average size of each cache entry.
    • Total Data: Calculate the total amount of data to be stored in the cache.

3. High-Level Design

  • Architecture:
    • Client Layer: Handles requests from users.
    • Load Balancer: Distributes incoming requests across cache nodes.
    • Cache Nodes: Multiple servers storing cached data.
    • Database: Persistent storage for data.
  • Data Partitioning:
    • Use consistent hashing to distribute data across cache nodes.
  • Replication:
    • Replicate data across multiple nodes to ensure fault tolerance.
  • Eviction Policy:
    • Implement LRU (Least Recently Used) or LFU (Least Frequently Used) eviction policies.

4. Detailed Design

  • Cache Write Strategy:
    • Write-Through: Data is written to the cache and the database simultaneously.
    • Write-Back: Data is written to the cache first and then to the database asynchronously.
  • Cache Read Strategy:
    • Read-Through: Data is read from the cache, and if not found, it is fetched from the database and then cached.
  • Consistency Models:
    • Strong Consistency: Ensures that all nodes have the same data at any given time.
    • Eventual Consistency: Ensures that all nodes will eventually have the same data, but not necessarily immediately.

5. Scalability and Fault Tolerance

  • Horizontal Scaling: Add more cache nodes to handle increased load.
  • Auto-Scaling: Automatically add or remove nodes based on traffic.
  • Fault Tolerance: Use replication and data sharding to ensure data availability even if some nodes fail.

6. Monitoring and Maintenance

  • Monitoring: Use tools to monitor cache performance, hit/miss ratios, and node health.
  • Maintenance: Regularly update and maintain the cache system to ensure optimal performance.

Example Technologies

  • Cache Solutions: Redis, Memcached.
  • Load Balancers: NGINX, HAProxy.
  • Monitoring Tools: Prometheus, Grafana.

This is a high-level overview, and each component can be further detailed based on specific requirements and constraints123


Back of Envelops Calculations:

1. Traffic Estimate

  • Total Queries: 1 billion queries per minute.
  • Queries per Second (QPS):

  • Read/Write Ratio: Assume 80% reads and 20% writes.
    • Read QPS:

    • Write QPS:

2. Storage Estimate

  • Average Size of Each Cache Entry: Assume each entry is 1 KB.
  • Total Data Stored: Assume the cache should store data for 1 hour.
    • Total Entries per Hour:

    • Total Data Size:

3. Node Estimation

  • Cache Node Capacity: Assume each cache node can handle 100,000 QPS and store 1 TB of data.
  • Number of Nodes for QPS:

    100,000 QPS/node 167 nodes

  • Number of Nodes for Storage:

    1 TB/node 60 nodes

  • Total Number of Nodes:

4. Replication Factor

  • Replication Factor: Assume a replication factor of 3 for fault tolerance.
  • Total Nodes with Replication:

Summary

  • Total Queries per Second: 16,666,667 QPS.
  • Read QPS: 13,333,334 reads per second.
  • Write QPS: 3,333,333 writes per second.
  • Total Data Stored: 60 TB.
  • Total Cache Nodes Required: 501 nodes (with replication).


To estimate the RAM required for the distributed cache system, we need to consider the following factors:

  1. Data Storage: The amount of data stored in the cache.
  2. Overhead: Additional memory required for metadata, indexing, and other overheads.

Data Storage

From our previous calculation:

  • Total Data Stored: 60 TB (60,000,000,000 KB).

Overhead

Assume an overhead of 10% for metadata and indexing.

Total Memory Requirement

  • Total Memory for Data: 60 TB.
  • Total Overhead:

  • Total RAM Required:

Per Node Memory Requirement

Assuming we have 501 nodes (with replication):

  • RAM per Node:

    501 nodes ≈ 132 GB/node

Summary

  • Total RAM Required: 66 TB.
  • RAM per Node: Approximately 132 GB.

This is a simplified example, and actual capacity planning would need to consider additional factors like network latency, data consistency, and failover strategies. 

Comments

Popular posts from this blog

Azure key vault with .net framework 4.8

Azure Key Vault  With .Net Framework 4.8 I was asked to migrate asp.net MVC 5 web application to Azure and I were looking for the key vault integrations and access all the secrete out from there. Azure Key Vault Config Builder Configuration builders for ASP.NET  are new in .NET Framework >=4.7.1 and .NET Core >=2.0 and allow for pulling settings from one or many sources. Config builders support a number of different sources like user secrets, environment variables and Azure Key Vault and also you can create your own config builder, to pull in configuration from your own configuration management system. Here I am going to demo Key Vault integrations with Asp.net MVC(download .net framework 4.8). You will find that it's magical, without code, changes how your app can read secretes from the key vault. Just you have to do the few configurations in your web config file. Prerequisite: Following resource are required to run/complete this demo · ...

How to Make a Custom URL Shortener Using C# and .Net Core 3.1

C# and .Net Core 3.1:  Make a Custom URL Shortener Since a Random URL needs to be random and the intent is to generate short URLs that do not span more than 7 - 15 characters, the real thing is to make these short URLs random in real life too and not just a string that is used in the URLs Here is a simple clean approach to develop custom solutions Prerequisite:  Following are used in the demo.  VS CODE/VISUAL STUDIO 2019 or any Create one .Net Core Console Applications Install-Package Microsoft.AspNetCore -Version 2.2.0 Add a class file named ShortLink.cs and put this code: here we are creating two extension methods. public   static   class   ShortLink {      public   static   string   GetUrlChunk ( this   long   key ) =>            WebEncoders . Base64UrlEncode ( BitConverter . GetBytes ( key ));      public   static   long   GetK...

AWS FREE ASP.NET CORE (.NET 6.0) HOSTING WITH FREE SSL

  FREE ASP.NET CORE (.NET 6.0) Hosting on AWS (Amazon Web Services) Today I was able to host my asp.net 6.0  + ANGULAR 14 application  on AWS Free  Initial Setup of your AWS Account and your Computer Get ready with your asp.net core 3.1 /.net 6 application Install  "AWS toolkit for visual studio 2022" as  visual studio extensions :  it will be required to deploy smoothly from Visual Studio 2022 itself, your life will be easy. Let's finish the AWS account setup  Get signed up with: its free but it will be required a valid credit card or debit card, they will charge nothing for the free services for 1 year * https://portal.aws.amazon.com/billing/signup#/start/email AWS console  for services and offering http://console.aws.amazon.com/ Create a user in AWS Console:  IAM With the help of AWS Identity and Access Management (IAM), you can control who or what has access to the services and resources offered by AWS, centrally manage fine-grained...